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Abstract. We create a family of boson coherent states using the functions of Mittag-Leffler (ML)
E4(2), (@ > 0) and their generalizationg, g(z), (o, 8 > 0) instead of exponentials. These
states are shown to satisfy the usual requirements of normalizability, continuity in the label and the
resolution of unity with a positive weight function. This last quantity is found for arbiwag > 0

as a solution of an associated Stielties moment problem. In addition,form = 1,2, 3... and

B = 1 (corresponding t&,, (z)) we propose and analyse specjadleformationg0 < ¢ < 1) of

the functionsE,, (z) which serve as a tool to defigedeformed coherent states of ML type. We
provide the expressions for expectation values of physical quantities for all the above states. We
discuss physical properties of these states, noting that they are squeezed. The ML coherent states
are sub-Poissonian in nature, whereastiieeformed ML states can be sub- and super-Poissonian
depending org. All these states are shown to be eigenstates of deformed boson operators whose
commutation relations are given.

1. Introduction

Conventional coherent states constitute a family of collective states of the harmonic oscillator
parametrized by a single complex numbeiThe huge literature on this subject can be traced
back from [1, 2]. The normalized coherent states, labelled by the complex numbes
defined by

Iz) = N2 (2% expzah)|0) 1)
1212 > Zn

—@ 2z 2

3 ;:o mln) (2)

whereN = a'a, [a,a'] = 1, N|n) = n|n) and (n|n) = 8,.»; |0) is the ground state of the
harmonic oscillator.
Their normalization isV'(|z|?) = exp(|z|?) and the states have non-vanishing overlap,

(zlz) = exp(— 3|z — Z/[* +ilm (z*2). ©)

The stategz) are eigenstates of a non-Hermitian operatod|z) = z|z). The resolution of
unity in terms of orthogonal projectofs) (x|

Z n)(n| =1 (4)
n=0
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has to be replaced byvaeightedsum of non-orthogonal projectors (z|, i.e. by
// &z )W (2l (2l = 1 (5)
C

with d2z = d(Rez) d(Im z), whereW (|z|?) is a positive function to be determined from (2)
and (5). The infinite set of conditions (5) can be rewritten as

3 [% /OOO e X" W (x) dx:||n)(n| .y (6)
n=0 )

with x = |z|?, which boils down to a (trivial) Stieltjes power-moment problem [3]: determine
a positiveW (x) = we * W (x) such that

/ x"W(x)dx = n! n=012...00 @)
0
which yields a (unique) solutio (x) = e~*. Note that with equation (2), (7) reads
% W (x)
x" | dx =n! n=0,1,2...00. 8
/ [ N(xJ ®

A quite general definition of coherent states has been given by Klauder [4], who proposed the
following minimal set of conditions.
The states$)r) are coherent states if the following are satisfied:

(a) |A) are normalizable, i.€gA|1) = 1;

(b) |A) are continuous in the labgl i.e.|» — A'| = 0 = [||A) — |1)|]? - 0;

(c) the setr) allows a resolution of unity with a positive weight functidin(|1|?) > 0, such
that

// MW (AP = 1. ©)
C

Condition (a) is axiomatic for allowable vectors, and condition (b) follows from the continuity
of the overlapping factogi|A’) through
Ay = [X)[1> = 2(1 — Re(r|)')) (10)

and is easily satisfied in practice. Condition (c) imposes very severe restrictions on possible
sets|A). In particular, if

H=NHH Y \/%m PO =1 (12)
then
N(r?) = i [ >0 (12)
= pn)
and (c) imposes far = ||?
/0 x" [n%} dx = p(n) n=012...00 (13)

which is the Stieltjes power-moment problem f8i(x) = 7 W (x) /N (x), W(x) > 0, [3]. An

inverse approachis also possible: any positive fundtiar) possessing moments such that the
normalization equation (12) converges, can serve as aweight function for some class of coherent
states, often with very interesting geometric properties [4,5]. A yet more ambitious method is
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to choose some moment set and attempt to solve it for the weight function. This method was
adopted in [6], where a special form of momepi&; ¢) with a parameter 6< ¢ < 1 was
shown to lead to a soluble moment problem.

Inthis work we extend the states (2) in the sense of repladibgits natural generalization
['(an+p), (a, B > 0); the normalization ex@z|?) becomes an entire functid?(ﬂ)Ea,ﬂ(|z|2)
where Ea,,g(lzlz) is a generalized Mittag-Leffler (ML) function [7]. These last functions,
apparently little known to physicists, are thought to be the most natural generalizations of the
exponential [7]. In the following we show that the states so defined satisfy the conditions (a)—
(c), i.e. they are coherent states. Moreover, the resolution of the unity problem can be solved
exactly, employing the techniques of Mellin and inverse Mellin transforms which we develop
specially for this purpose. We shall pay particular attention to the question of uniqueness of the
solutions. We next define thedeformed ML functiong0 < ¢ < 1) and use them to produce
g-deformed ML coherent states. Explicit calculations of properties like energy, statistics,
fluctuations and the Heisenberg relations, reveal a highly interesting physical content. Finally,
we address the question of eigenproperties of these states, and find explicitly the deformed
boson annihilation operators of which the above states are eigenstates.

Necessary additional mathematical details and addenda are to be found in appendices A
and B.

2. Coherent states via ML functions

In this paragraph we extend the construction of coherent states by choosing the coefficients
p(n)in

) =N"E(z)Y

ZI‘L
L 14
> (14)
with
Nz =3 (15)
= pn)

in such a way that the three requirements (a)—(c) are satisfied. One variant of this approach has
been developed in [5], where the existence of the weight function was assumed ard)the

were given as its moments, ign) = f0°° xX"W(x)dx,n =0,1,2,...00 with p(0) = 1.

In the present work we adopt an inverse approach: we choose(#heand then solve the
moment problem and obtali (x). It should be noted that the conditions for the solubility of

the moment problem are very restrictive: positive solution exists if and only if the two series
of upper-left-corner determinants of the following Hankel-Hadamard (HH) matrices

he’ (i, j) = pli+j—2)

WG, )= pG+j—1)
are positive foralh = 1, 2, ... 00 [3]. For a generap(n) the proof of positivity is virtually
impossible. We therefore proceed differently by constructing a solution with the aid of the
inverse Mellin transform. If such a construction leads to a positive solution the difficulty of
proving the positivity of HH determinants has been overcome. Here we shall concentrate on
the case wherg/(|z|?) has an infinite radius of convergence, i.e. the lapains over the
whole complex plane. Ip(n) # n! the resulting normalization will be a function different
from the exponential. Previous attemps in this spirit concentrated mainly on different kinds
of generalized exponential functions [8]. In recent publications [6, 9] we have chosen to solve

(,j=12....n) (16)
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certain functional equations and have ended up with another family of generalized exponentials
permitting a solution of the moment problem.

Here we propose a simple ansatzgan ), which will lead naturally to a hitherto unexplored
family of coherent states. To this end assume

o = D@+ B)
P =B

which leads to the normalized states

a,p>0 (17)

VIS SV
|z 0, B) = [Nap(l21D)] Z:(,‘) W S rTETI (18)
with normalization\,, s(1z|?) = T'(B) E4.(|z|?), where
o0 xn
Ea,ﬁ(x) = HZ; F(T-I—ﬂ) o, IB > O (19)

These last functions fg¢ = 1 were introduced and analysed by Mittag-Leffler at the beginning

of this century [10], and thus bear his name. We denote thgm(x) = E,(x). The
generalized ML functiong, gz (x) were introduced later [11,12]. For more recentreferences on
this subject see [13,14,24]. These ML functions are natural generalizations of the exponential,
and we shall referto equation (18) as ML coherent states; the normalization is expressed through
the generalized ML function in the same way as the normalization of standard coherent states is
expressed by the exponential. TEgg(x) have only recently found application in physics [15].

We have summarized some of their properties and have given some examples for particular
values ofe and g8 in appendix A. It is intriguing to observe that for many differents, the

ML functions E, g (x) can be expressed as combinations of elementary and special functions.
We now investigate the statgs «, 8) of equation (18) in the light of the requirements (a)—(c).

The statelz; o, ) is normalizable, sincé, g(x) is an entire function and has no zeros for

x > 0. The continuity in the label follows trivally. The overlap between two states is given by

E, p(z*7)
VEap(zIDEq (%)

with the numerator vanishing at the rootsif 4 (x). E, g(x) do not have roots on the positive
half-axis, as can be seen by applying the Hurwitz criterion [16] to equation (19). The states
are orthogonal it*z’ = ri(a, B), wherer,(a, B) is thekth root of E, g(x). Since there is a
countable number of roots, we conclude that two ML states are never orthogonal, except on a
set of measure zero.

The resolution of unity leads to a requirement VBC[,,g(|z|2)

(zsa,BlZ5 0, B) = (20)

/ / o2 12 o, ) War(1217) (23 v Bl = 1 (21)
C
which, in turn, leads to the following Stielties power-moment probiers |z|?):
o [(an + B)
X"Wyg(x)dx = ——= n=012... 22
[ = S 22

where Wy 5(x) = 1We 5(x)/Nop(x) = TWep5(x)/(T'(B)Enp(x)). We find W, 5(x) by
interpreting (22) as the Mellin transform, for compleof W, g(x) [17]:
MNas+p —a)

23
(o)) (23)

/ x“lWa,ﬁ(x) dx =
0
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or

MNas+p —a)
'(B)

with f*(s) being the Mellin transform off (x), [o~ x* "1 f(x)dx = f*(s) = M[f(x); s].

To obtain W, g(x) we must perform an inverse Mellin transform on (24). We use

Mx f(x"); s] = £ f*(22) (see equation (B.3)) with = 1 andb = £=% and thus

W () = (24)

B—a 1
X « ¢

al'(B)

which is a positive solution of the Stielties moment problem. This solution is not unique in
general, as may be ascertained from the Carleman condition (excepf@, see section 3).

W p(x) = x>0 (25)

Fora # 1 # B we see thaW, z(x) is a natural extension d¥1 1(x) = e~*. For completeness
we note a few explicit examples of the normalizatigfiss (x) arising from some ML functions:
el—e”
Ni2(x) = %
e(l—-e*(1+x))
Nis(x) = 2( 2 )
sinh(y/x
Nao(x) = h(—x\/_)
B 1 cosh/x)
Noz(x) =2 (-)—C + T) (26)
1 1 1 1
Nao(x) = <e‘4 — e +2sinx7)
4x

Nps(o =T (%) (iﬂ - Jrer (1- erfc(ﬁ)))

() TD s (V2 1
Nl’i(x)—l“<§> N> <1+x e (F(%) —F(Z,x)>> etc...

where erf¢x) is the complementary error function afda, x) is the incomplete gamma
function. All of these functions are equal to onexat 0 and are increasing with positiwe
in analogy to expr).

3. Constructing solutions of the Stielties moment problem

It has to be stressed that due to the intractability of verifying the positivity of the HH
determinants (equation (16)), one is led to apply the inverse Mellin transformation directly
to

/ xX"W(x)dx = p(n) n=0,12... 27)
0
or, equivalently, fos complex,

/Ooxs_1W(x) dx = p(s — 1). (28)
0

If W(x) > 0,thenitisasolution of the Stieltjes moment problem, as in the case of equation (25).
We call it a principal solution. Is this a unique solution? The answer is given by the (sufficient)
condition of Carleman [3, 18]: if we know that a solution exists then

def = 1 00 the solution is unique
<00 non-unique solutions may exist.

(29)

n=1 [,O(Vl)] %
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If S < oo one would like to know solutions other than the principal one. Returning to the ML
moment problem, non-uniqueness may result if

SEY a =Y MEIFMen+pl % < oc. (30)
n=1

n=1

A practical way to determine the possible convergence of the abisuie apply the logarithmic
test [19]:

if lim In(@,) <-1 S converges (31)
n—oo IN(n)

it im M9 1 gdiverges (32)
n—oo IN(n)

If, in equation (32), the limit is equal te-1, the test is inconclusive. It is convenient to use
the asymptotic form of ' (x) for x large (real and positive); (x) ~ 2rxi 2 (Stirling’s
formula). One then obtains lim.« In(a,)/ In(n) = —5 and the logarithmic test gives

a>2 al >0 S converges; non-unique solutions may exist
a<2 al >0 S diverges; unique solution

Fora < 2, all B > 0, W, g(x) of equation (25) is then the unique solution. How does
one determine additional solutions fer> 2, all 8 > 0? We know of no general method

to answer this question, but propose here a construction based on further applications of the
inverse Mellin transform which, for this given problem, will allow one to generate non-unique
solutions. To be more specific, we will first construct, within the framework of ML functions,

a set of functionso, (x) parametrized by (to be defined later) such thall their moments
vanish, i.e

/w” () d /oo yar—o  TOE (33)
0 ToniE x_o ToeRy = s=123....
Such functions play a fundamental role in the field of integral transforms [20].

The functionwy; (x) cannot be strictly positive as is seen by setting= 0 in (33). By
definition their Mellin transformw (s) vanishes fos = 1, 2, 3.... We choose the following
equations to produce the functiom$(s):

/O Y () dy = F(%g)ﬂ)hk(n) (34)
or, equivalently,
oo F _
/o X o (x)dx = th(s -1 (35)

whereh, (n) is any holomorphic function vanishing far= 0,1,2... (ors = 1,2,3...).
There is evidently an infinity of possible choices f(n). It turns out that the simplest choice
hy(n) = sin(wk(n + 1)) leads to a desired solution here. In other words,

1 _Tas+p—a)
/(; X Top(x)dx = —F(,B)

andwy (x) is given by the inverse Mellin transform

sin(rks) k=+142 +3... (36)

1 +ioo . N
wr(x) = m - [(as + B —a)sin(wks)x™* ds k=+41+42,43... (37)
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which is not listed in existing tables [19, pp 630-732, 21, 22]. An explicit calculation (see
appendix B) gives

B _ % wk .
wp(x) = X @ expl—xe CosC, ) Sih(nk (1— E) +x@ sin (n_k)) a > 2lk|. (38)
al'(B) o o

It is useful to recall the equation that (x) satisfies:

o % exp(—x} cogk
/ PR °°S(a”sm(nk(l_é)”ism(”_k)) d
0 al'(B) o o

_T@n+p)
Y0

Change the variable in equation (397)5. = x+ cos(%"). Then equation (39) transforms into

sin(k(n + 1)) a > 2|k|. (39)

1
—xa

o yie B wk
f X Sin(nk (1— —) +x;tan(—)) dx
0 al’(B) a o
an+p
- Cos<%k> %};ﬁ) sintk(n +1)  a > 2lk|. (40)

Therefore, the functiofy (x) defined by

xce sin (nk (1— ﬁ) +xe tan(n—k))
oal'(B) o o
= Wg,p(x)sin (nk <1— é) +xitan<n—k)) (42)
o o

has all its moments vanishing. It can now be added to the principal solitigrix) to produce
a strictly positive function satisfying equation (22) giving a two-paramétes)family of non-
unigue solutions of equation (22), which we c#lx; «, 8, k, €), and are given by

B

Rl

o) =18

B—a 1
et . 1 k
W(x;oz,ﬂ,k,e):x— l+esin|nmk 1—E + x4« tan i
o' (B) o o
le] <1 k==+1+£2,4+3... o> 2| (42)
; i i .14 31 5 4 ;
In figure 1 we represent the weight functiods(x; 7, 5, 2, ) of equation (42) and

W1a/3 31/3(x) Of equation (25).

Choosing forh(n) functions other than sirk(n + 1)) would give other families of
solutions of equation (22), however at the cost of considerable complication in evaluating the
inverse Mellin transform.

The weight function simplifies considerablydif= g andk = 1 (@ > 2):

e . T 1
W, a,a,1,¢€) = oT ) (1 +e sm(tan(;)xa)) le] <1 o> 2 (43)
The casex = m (integer> 2) andpB = 1 refers to the original ML functiorE,, (x) (see
equation (A.1)).

Obtaining equation (42) completes the demonstration that the ML-states of equation (18)
possess a resolution of unity fer 8 > 0, with non-unique weight function far > 2.
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3x107° |-

W(x; 14 31 2.4)
3 3 5

2x107% |-

W(x)

1075 u

0 5000 104 1.5x104 2x104 2.5x10%
X

Figure 1. Weight function plots: the oscillating curve is the function given by equation (42) for
the cases = 1—34, B = %1 k = 2 ande = 0.8, and the non-oscillating one represents the function

given by equation (25) for the cases= %4, B = %1 By construction, the areas under these two
curves are equal on (60).

4. Coherent states viag-deformed ML functions

We now refer to the remarkable and simple relation satisfied by the ML functions of integer
orderm, (m > 1), see equation (A.2):

dm m m
T En@") = En (™), m=123.. .. (44)

Form = 1 this is simply the definition of exp). In the spirit of [6] we now construct two
classes ofj-deformed(0 < ¢ < 1) ML functions E,, (x; ¢) ande,, (x; ¢) which are defined
as analytical solutions of the following functional equatigms= 1, 2, 3, .. .):

d"E,.(z2"; q)

oy = En((q2)"; q) (458)
En0;q)=1 (450)
and
% =q26,((q2)": 9) (46a)
em(0; q) = 1. (46b)

Evidently, forq = 1, E,(z; 1) = ¢,(z; 1) = E,(z). We recall that equations (45) are
differential equations with the argument shifteddoy Consequently, there are no continuity
arguments which would permit one to deduce any property of their solutions for thg eage
from, sayg = 0.99.
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We will find the solutions of equations (45) and (46) assuming that the funcligts ¢)
ande, (z; g) can be expressed as power series:

En(z;q) =) an(m, q)z" (47)
n=0
em(ziq) = Y ba(m, q)7". (48)

n=0
We substitute equation (47) into (45) and (48) into (46) and obtain the linear recursion relations
for the coefficientsy, (m, ¢g) andb, (m, g):

a,(m, q)g™

n , = =m0 =0,12... 49a
an+1(m, q) Tamn 1) n (49a)
ag(m,q) =1 m=1212... (490)
ba(m, )g""*?

by q) = —p———————— =0,1,2... 508,
+l(m ‘Z) I—[;n:]_(m”l +l) n ( )
bo(m,q) =1 m=12... (50b)

from which the explicit forms of the two requiregddeformed ML functions follow:

00 mn(n—1)
q

E.(z;q) = — 7" =12... 51
(@q) g I”(mn+1)Z " (51)
S _at 1,2 52
€m(Z,C])—gomZ m=12.... (52)

They are convergent in the whole complex plane. We now construct new normalized states
using the coefficients of the above functions:
1 < g

mn(n—1)

lz3m, q)1 = R > mz In) (53)
= 54
lzim, q)2 = T(IZIZ ); ’—l"(mn+l (54)
The overlaps are, respectively,
En(2*7; ¢?)
1z m, qlZ'sm, q)1 = (55)
VEn(21% 4D En(2'%; ¢2)
re 2
2lzim. gl im. q)2 = enlZZiq) (56)

Ven (1212 42)en (1217 42
The remarks following equation (20) apply here too. The resolution of unity in terms of
|z; m, q)12 reads as

/ 2z |zsm, q)12Wi2(Iz1%m, q) 12(zsm, ql = 1 (57)
c

where the positive weight functioﬁi’l,z(lzlz; m, q), yet to be determined, are the solutions
of the following Stieltjes moment problems:

© Wi(x; C(mn+1 =0,12...

ﬂ/ o Wi(x; m, q) dr — (mn +1) n (58)
0 E,(x,q%) g1 m=1273...
© Walx; TC(mn +1 =0,1,2...

n/ o Wa(x;m, q) dr — (mn ! ) n (59)
0 em(x, q?) gmn m=123....
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Application of the Carleman criterion (29) leads to the following:

e if g < 1 the solutions are possibly non-unique formll
e if g = 1the solutionis unique for = 1, 2 and possibly non-unique for = 3,4, 5. . . co.

For Wi(x;m, q) = JTWl(x; m, q)/Ey(x, q2) andWy(x;m, q) = an(x; m,q)/em(x, qz),
equations (58), and (59) read

C(mn+1) n=0,12...

oo
/O Watxim, ) de = = TS 13 (60)
o r +1 =0,12...
/ x”Wz(x;m,q)dx:(mLz) " (61)
0 qmn m=123....

The solutionW (x; m, g) andWa(x; m, g) are related through the change of variable ¢™y
in equation (60) which leads to
< A Wig@"yim, q) I'(mn + 1)
y —m dy = mn? :
0 q q
This tells us that iW,(x; m, q) satisfies equation (60) thé¥(x; m, q) = g" Wi(g"x; m, q)
satisfies equation (61). In other words, we have the following scaling relation:
Wix;m, q) = g " Walg™"x;m, q) (63)

and it is sufficient to solve equation (58) only.
We first solve two simpler problems

(62)

/ xX"P,(x)dx = T'(mn +1) n=012... (64)
0
and
/ X" (x,g)dx = 5 n=0,12.... (65)
O qmn
Through equation (25)
xmoe "
Pn(x) = ——. (66)
m
Rewrite equation (65) as:
/ Xy (x,q) d = €077 (67)
0

wheres = m In(%) > 0 and note that a solution to an auxiliary problem

[ ot e = & (68)
0
is given by [21]:

1 ~ n@)?
e &
2 /mm In(i)

We now use equations (68) and (B.3) to obtain the solution of equation (6b},:ag) =
xMpo(x, q) with

Yol(x, q) = (69)

1 ~ (nw)?
e &

T (70)

Y(x,q) =
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which is the lognormal distribution function [23]

p(p,o,x) = oxon eXp<—%‘;M)2> (71)
with © = 0 ando? = 25. Finally, since from equation (64)

/OOO X (x) dx =T (m(s — 1) + 1) = ¢ (s) (72)
and from equation (65)

/:O M (x, g) dx = gD’ = Y (s, g) (73)

we can use the convolution property of the Mellin transform (Parseval equation), see
equation (B.6), to obtain

o 1
Wo(x;m, q) = / Y (f, q) ¢ (u)— du
0 u u

= m /Oooulmme‘””ﬁ exp(—(lnST?))j du (74)
and with equation (63)
Wi(x;m, q) = _ /OO W et exp(——(ln(ﬁ))2> du. (75)
2m~/78x Jo 45

Both W1 andW,, are positive functions of for 0 < x < oo and are thus principal solutions of
the moment problems (60) and (61). We illustrate this by displaiing:; 3, %) as a function
of x in figure 2.

The non-unigue solutions can be obtained by using the methods of the previous section
but they will not be reproduced here.

The states (53) and (54) possess a resolution of unity in terms of positive functions
Wi 2(x; m, g) and are thus coherent states.

5. Physical applications

The ML andg-deformed ML coherent states belong to a category of states which can be
expressed in the form

— N3 (|22 fo: & 76
1z) (I ),.=o p(n)|n> (76)
with the normalization
o0 |Z|2n
N(Iz)? =§ 77
(Iz1%) 2 o) (77)

whichis an entire function. In equations (76) and (77)dtbe) are the:th moments of a positive
weight function in the resolution of unity. As we have seen above, in a general case the weight
functionis notunique. The simple structure of these equations allows relatively straightforward
calculations of various expectation valuesgn which by necessity are functions of the set of
p(n); in some cases (see below) these are functions only of normalization.



7554 J-M Sixdeniers et al

0.01
©
=
=
% 0.005
=
0

Figure 2. Plot of weight functionWy(x; m, g) for m = 3 andg = % as a function ofx (see
equation (75)).

Some expectation values of polynomial Hermitian operators are expressible through the
derivatives of\'(|z]?), for r integer

a0 = 2 (S Y ety -
(zl(a)a|z>—N(|Z|2) gop) VP =012 (78)

This means that the normalization|ef is a generating function for certain expectation values
in |z). We quote for completeness a generalization of equation (78) fo= 0,1, 2. . .:

*\p I O + ! + )l % 2n :0,1,2...
_ @Drz Z[(n pln+r) } |z r (79)

N(zD Z Lo+ ppn+r)] nl p=012...
which, ifr £ p includes non-Hermitian operators. The formulae (78) and (79) have been used
to calculate various expectation values and fluctuations of physical quantities in the ML and

g-deformed ML states.
From equation (76) it is easy to determine the probability of finding the piata the

state|z; «, B). Itis equal to(x = |z|?)

x"I'(B) (80)
Eq g(x)I(an + B)
and is different from the Poisson distribution characterizing the conventional coherent state
unlesse = B = 1. Further information about inherent statistical characteristics may be
obtained from the Mandel parametgy, [29] (N =ata):

o parer
S -

(zl@hra |z)

Pa,p (I’l, x) =

M
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6 \ \

(z;1,1/2|a+alz;1,1/2 )

Figure 3. Plot of (z; 1, 31a'alz; 1, 3) as a function ofz|2. This expectation value @f'a may be
regarded as the energy, proportional to the number of photons in th¢z$tat@2-).

where(AA)?2 = (A?) — (A)2. All averages are taken in the stdtec, 8). For illustrative
purposes we shall limit ourselves here to the calculationsfer 1, 8 = % that is for the
momentso(n) = T'(n+3)/T(3),n =0,1,2,..., co. Infigure 3 we represent the expectation
value(z; 1, %|]\7|z; 1, %) as a function ok = |z|2. We notice that this energy is larger that the
value () obtained in the conventional coherent states.

In figure 4 we plot the Mandel paramet@r, which is negative, and consequently the
state|z; 1, %) is sub-Poissonian. We next turn to the expectation values of momepitana
the coordinate? in |z; 1, %). In figure 5 we plot A 0)2 which for realz is less than &, thus
giving squeezing in this quadrature. In figure 6 we shiowP)2 which is squeezed for purely
imaginaryz. Results for other values efand may be obtained in a similar way.

In figure 7 we present the variance of the coordingtén the ¢g-deformed ML state
|z; 2, ¢)1 (see equation (53)) for several valuesqof We observe that this state is always
squeezed for small but becomes dilated above a certain valug afhich depends og.

Complete exploration of other valuesmf g andx confirms the rich variety of behaviour
observed fom = 2.

6. ML states and boson deformations

The conventional coherent staté is an eigenstate of the annihilation operaipd|z) = z|z).
In this section we show that the ML states are themselves eigenstatetetdrenedboson
operatorb, which is adeformatiorof . This observation permits us to situate our work in the
context ofdeformed bosons subject thoroughly investigated recently [27]. It turns out that
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Figure 4. Plot of the Mandel paramet&? 4 (x) as a function ofc = |z|2. SinceQ (x) < O for
all x > 0, the statéz; 1, %) is a sub-Poissonian one.
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Figure 5. Plot of (AQ)? = (Q?) — (Q)? for |z; 1, 1) as a function ot = x +iy: the complex
plane is represented by the horizontal one with the real axis Rez) on the right-hand side, and
the imaginary axisy( = Im z) on the left-hand side.
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Figure 6. Plot of (AP)? = (P2) — (P)? for |z; 1, 1) as a function o = x +iy: the complex
plane is represented by the horizontal one with the real axis Rez) on the right-hand side, and
the imaginary axisy = Im z) on the left-hand side.

an auxiliary notion of doxfunction [x], g (‘box’ x) will be helpful [28], withe, S referring to
appropriate ML functions. The box function will be used to define the generalized exponential
function, identified here with the ML function, (for thedeformed ML, see later) as

00 Zn
E, = — 82
0= L o
with
[nas! € [ap[2las - - [Mlap = Tlan + B). (83)

The deformation of the boson operatoris determined by#], leading to the deformed
commutator [28]

Ba,ﬁi;l,ﬂ - I;Z,ﬁl;a,ﬁ = [](] + 1]ot,ﬁ - [N]a,ﬂ (84)
whereN = a'a, Nin) = n|n). From (83) it follows that it is natural to define

[n]ap! — Tlantp)
n—1ep! Tl —1)+p)

if n > 0,and [0} s = 0. The operatoré anda act on the same Fock spage)}. Then from
equation (84) we obtain

bogln) = /Inlapgn — 1) (86)
bl gln) = I+ Lapln + 1) (87)

which give the explicit relation betwegéhandb

N n [I\A/ + 1]a B
bl = aT‘l —_— 88
op N+1 (88)

[n]ap = [ (85)
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(4Q)?

0 5 10 15 20
|z[?
Figure 7. Plot of (AQ)? = (Q?) — (Q)? as a function ofz|? for several values of andm = 2.

Here, the averages are calculated in the states, ¢)1 (given by equation (53)); we thus have
(Q) = 1(z;m, q|Qlz; m, g)1.

Using the above relations we rewrite the statex, 8) as
@, B) = [Eaﬁ<|z|2>]—%Eaﬁ<z13§,,g)|0> (89)
=[Eqp(lzI? )]_E (90)
Z 0V [ ]a B
and, from equation (86), the eigenproperty holds
boplz; @, B) = zlz; @, B). (91)

This formalism generalizes easily gadeformed ML functionskg,, (x; ¢) ande,, (x; ¢). We
carry it through forE,, (x; ¢) only:

jzim. )1 = [En(2% D) 2 E, (zéfq; 9I0) (92)
En(zl% ¢?)] 2 93
= [En (2% )] Z W (93)
with
[y = %1)1) mon=123... (94)
and
(mn)! 1
[n]m;q = M ={ (mn — 1)! q2m(n_1) n>0 (95)

[I’l - 1]111;q! 0 n= 0
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Itis instructive to calculate the explicit deformations of the commutator equation (84) and of
the operator itself equation (88), basedign, b, — by, bu:q = [N + g — [Ny

n
m = 1 [I’l]l;q = m (96)
l;]%qZ;I,q - q*ZBqu;l;q = q*ZN (97)
by, = VDN (98)
2n(2n — 1)
. . 8N +2
T —47t
bZ:qbZ;q -9 4b2;qb2§q = W (100)
bpy = VAN + 28V NW0 5. (101)

The results forn > 2 are readily obtained. Note that far = 1 the formulae are derived

in [6]. In this case only, whep = 1, thenBl;l = a. Form > 2 we have a deformation even
forg = 1: we still haveISm;l #a. Form = 2,q = 1 we obtain a realization of th&U (1, 1)
algebra; whery # 1 we obtain a deformation of that algebra, different from the standard
deformation [34]. Foiz; m, ¢g)1 of equation (92) the eigenproperty

buiglzim. @)1 = zlzim, q)1 (102)

still holds.
Note that equations (97) and (100) are new deformations of the boson commutator which
differ from the standard ones [30-33].

7. Conclusions

Coherent states provide an important theoretical resource for the description of physical
phenomena. Thus the standard (Glauber) coherent states describe an ideal laser in quantum
optics, a good approximation to a real laser. More recently, these same states have been
used to provide a good starting point for the description of a boson condensate in the
phenomenon of Bose—Einstein condensation. However, the repertoire of coherent states has
been rather restricted, usually limited to those states associated with Lie groups or, more
recently, quantum groups. Starting from the axiomatic description of coherent states, one
opens up the possibilities limitlessly; however, the difficulty remains of demonstrating the
resolution of the identity property for such putative coherent states. In this paper we illustrated
methods for the solution of this problem by the use of the Mellin and inverse Mellin transforms,
with specific application to a new family of coherent states based on the functions of Mittag-
Leffler, natural generalizations of the exponential function which plays a pivotal role in the
standard case. Since the ML functions are often related to well known elementary classical
functions of analysis, it is not surprising that the associated coherent states may well prove
important in the discussion of physical phenomena; thus, squeezed vacuum states are related
to the function costx) = E»(x?). In this paper we examined the physical implications of

the ML states; in particular their squeezing properties. Finally, we showed that this family of
states, and their-deformations, can be expressed as eigenstates of deformed boson operators,
thus demonstrating the relationship of the present work with the study of deformed bosons.
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Appendix A. ML functions and some of their properties

The ML functions were introduced in [10] and are defined by the series

o0 n

z
Ey(2) = - 0 zeC. Al
@) ; F'an+1) “= ‘ (A1)
In our considerations we use only the valaes 0, for which E, (z) is an entire function. A
rather complete account of the propertie€gfz) can be found in [7]. A more recent detailed
exposition with an actualized reference list is the [24].
Form integer (n > 0), E,,,(z) satisfy

dz

from which we see clearly thdt,, () are generalizations of the exponentislh (z) = €)
and coskiz) (E2(z%) = coshz)). Generalized ML functions are defined as

o n

Z
Ey5(2) = e —— a,B>0 zeC A.3
0.p(2) ; Tan 7 B) B z (A3)
andE, 1(z) = E4(2).
SinceE, g (z) are proportional to the normalization of coherent statas, g) itis essential
to verify thatEa,,g(lzIZ) is never zero. In fact, we have the following statements about the zeros
of ML functions:

e E,(z) fora > 0 has no zeros on the positive real axis (o= 1 there are no zeros at all);

e E,(z) fora > 2 has a countably infinite number of zeros on the real negative axis and no
other zeros;

e E, 3(2) for a, B > 0 has no zeros on the positive real axis.

Here we quote some examplesif s (z) and their relations to other elementary and special
functions:

Ei(z) = €
E(z) = cosh(y/z),

1 : 3
E3(2) = 3 (ezl/3 + 267 cos(§z1/3>)

1 1
Ea@) = 7 (ezl/4 + e‘zm> +3 cogz?) etc. ..

e€(l—¢e*
E12(z) = %

el-e=(
E1s(z) = ( Z2( +2))
Ez2(2) = —Smh(ﬁ)

vz
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1
E>3(2) = % (=1 +cog/2)) etc...
(1 — erfe(\/2))

Ey3(2) = 7

1ev% erf(zY4) + eV erfi(z1/4)
Er3@) =3 /4

13+ V36 Jre’s erf (%)
E33(2) =3 - etc. ..

where erfx) is the error function, erfa) is the complementary error function and érfi =
i erf(ix) is the imaginary error function.

Appendix B. Mellin and inverse Mellin transforms and their applications to the Stieltjes
moment problem

We quote here the main formulae of the Mellin and inverse Mellin transform [17] as applied
to the solution of the moment problem.
The integral

[ et = 1o M) -
0

is called the Mellin transform, for complexofthe functionf (x) andis denotedA[ f (x); s] =
f*(s). The inversion of equation (B.1) determing¢x) in terms of f*(s) and is denoted
fx) = M7 £*(s); x]. The explicit formula for obtainingf (x) from f*(s) is given by

1 erioe * -5 def =1 £x
r0 =5 [ ror e S M 8.2)
which denotes the inverse Mellin transform. The conditionsgd¢) which ensure that the
inversion equation (B.2) exist are enumerated in [17]. In fact, for a vast class of functions
f*(s), the value off(x) does not depend on the value ©find one can fix = 0, which
effectively means integration over the imaginary axis. The Mellin transform obeys a certain
number of relations obtained from a linear transformation, &&, b, 2 € R; a, h > 0):

M[x? f(ax"); s] = %a’¥f* <S ;b> (B.3)
M[xP flax™");s] = %a%v* <_s ;b) ) (B.4)

For our applications the essential property is the so-called Mellin convolution (which has to
be distinguished from a conventional convolution of, say, Fourier transforms). For arbitrary
a, b the following indentities are valid:

+ico

x4 /00 P fx)g(t)dr = i [fs+a)g*(l—s—a+b)xds (B.5)
0 271 J_ i

x* fm t"f (f) g(t)dr = i N ffs+a)g*(s+a+b+Dx*ds (B.6)
0 t 271 J_ o

which are also referred to as generalized Parseval relations. The quantity on the Ihs of
equations (B.5) and (B.6) is called the Mellin convolution. In other words, equations (B.5)
and (B.6) state that the inverse Mellin transform of a product of two linearly shifted Mellin
transforms is equal to the Mellin convolution of individual inverse Mellin transforms.
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The Stieltjes moment problem consists in finding a posifie ) such that for givep (n)
/ xX"W(x)dx = p(n) n=0,12...00). (B.7)
0

A representative application of this problem is the atomic physics wiigxe is the electronic
density (see [25] and references therein).

The moment problem can be treated by the inverse Mellin transform [26]. We rewrite
equation (B.7) as

/ FIW@) de = p(s — 1) seC (B.8)
0
from which

W(x) = MY p(s = 1); ] (B.9)
using equation (B.3) foh = a = 1 andb = —1. If W(x) is positive, it is a solution of

the Stielties moment problem. The Mellin convolution equation (B.6) allows one to create
new soluble moment problems if at least one positive solution of a single moment problem is
known.

We illustrate it by choosing in equation (B.&)= 0, = —1 andf*(s) = g*(s). If f(x)
is a positive function then the inverse Mellin transform g (s)]2 is equal tof(;>O f(’;‘)f(t),l dr
which is again positive. In other words, having solved equation (B.7pf6r) we solved it
for pf(n), pf(n) ... etc. Asin general the related problems will have non-unique solutions, it
follows that a solution of a given problem generates an infinity of solutions of an infinity of
related problems.

As an application of the formula equation (B.2), we now present the explicit calculation
of the inverse Mellin transform of equation (36),

/ x"W(x)dx = '(an + B) sin(rk(n + 1)) k=41 +2... (B.10)
0
i.e. the calculation of

W) = 2im / ~ C(a(s — 1) + B) sin(mks)x ™ ds

= %/ T(a(iy — 1) + ) sin(rkiy)e "™ dy. (B.11)

o0

In equation (B.11) we usk(z) = t*~te~" dr (Euler’'s representation) and rewrite it as

+00 1 +oo efnkyfiyln(x)
W (x) =/ [z—f 1o dy}t‘“ﬂlef dr
0 T J_0o 2i

+00 1 +00 eﬂky—iyln(x)
—\/0 [Z / tlayT dy:|t_a+ﬁ_le_t dr. (BlZ)
—00

The internal integration in equation (B.12) gives Dirac delta functions, leading to

W(x) = %f OoS(ozln(t) — (In(x) —izk))r P le™" d
0

—% / S(aIn(®) — (In(x) +imk))t 1™ dr.
0
Integrating out theé leads to

W(x) = %/ OO[<3(u —(n(x) —imk)) — 8(u — (In(x) +imk))]

X exp(—e«'z" + g(ﬁ — a)) du (B.13)
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which after a few steps gives

Xt et (%) B\ . . [k
W(kx)= ——————5sin <7rk <1— —> +xe sin(—)). (B.14)
o o o
The W (x) in the above form is integrable only if c()éaﬁ) > 0, which requirest > 2|k|.
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